Generic Summarise function for esitmators
Usage
summarise_estimator(
est,
real,
lower = NULL,
upper = NULL,
null = NULL,
est_sd = NULL,
name = NULL
)
Arguments
- est
estimator, expression evaluated in results
- real
real summary statistic, expression evaluated in condition
- lower
lower CI, expression evaluated in results
- upper
upper CI, expression evaluated in results
- null
parameter value under the null hypothesis
- est_sd
standard deviation estimated by the method, evaluated in results
- name
name for the summarise function, appended to the name of the analysis method in the final results
Value
A function that can be used in Summarise that returns a data frame with summary statistics of the performance measures in the columns.
Details
The different parameters are evaluated in different envionments, est
,
lower
, upper
, est_sd
refer to output of the method and are evaluated in
the results dataset. real
refers to a real value of a summary statistic in
this scenario and is therefore evaluated in the condition dataset. null
and
name
are constants and directly evaluated when the function is defined.
The argument null
, the parameter value under the null hypothesis is used to
output the rejection rate based on the confidence intervall. Which is output
in the column null_cover
Examples
# \donttest{
# generate the design matrix and append the true summary statistics
condition <- merge(
assumptions_delayed_effect(),
design_fixed_followup(),
by=NULL
) |>
tail(4) |>
head(1) |>
true_summary_statistics_delayed_effect(cutoff_stats = 15)
# create some summarise functions
summarise_all <- create_summarise_function(
coxph=summarise_estimator(hr, gAHR_15, hr_lower, hr_upper, name="gAHR"),
coxph=summarise_estimator(hr, hazard_trt/hazard_ctrl, hr_lower, hr_upper, name="HR"),
coxph=summarise_estimator(hr, NA_real_, name="NA")
)
# runs simulations
sim_results <- runSimulation(
design=condition,
replications=10,
generate=generate_delayed_effect,
analyse=list(
coxph=analyse_coxph()
),
summarise = summarise_all
)
#>
#>
Design: 1/1; RAM Used: 183.9 Mb; Replications: 10; Total Time: 0.00s
#> Conditions: delay=121., hzrd_c=0.0009, hzrd_t=0.0006, rndm_w=0.0001, n_trt=150, n_ctrl=150, follwp=730., rcrtmn=182., mdn_srvvl_t=1034, mdn_srvvl_c=730., rmst_t_15=14.8, rmst_c_15=14.8, gAHR_1=1, AHR_15=1, AHRc_15=1, AHR__1=1
#>
#>
#> Simulation complete. Total execution time: 0.04s
# mse is missing for the summarise function in which the real value was NA
sim_results[, names(sim_results) |> grepl(pattern="\\.mse$")]
#> # A tibble: 1 × 3
#> coxph.gAHR.mse coxph.HR.mse coxph.NA.mse
#> <dbl> <dbl> <dbl>
#> 1 0.10149 0.025430 NaN
# but the standard deviation can be estimated in all cases
sim_results[, names(sim_results) |> grepl(pattern="\\.sd_est$")]
#> # A tibble: 1 × 3
#> coxph.gAHR.sd_est coxph.HR.sd_est coxph.NA.sd_est
#> <dbl> <dbl> <dbl>
#> 1 0.15869 0.15869 0.15869
# }